Integrative STEM Education (M.A.Ed.)

(M.A.Ed. in Curriculum and Instruction)

Campus: Virginia Tech Blacksburg Campus

Virginia Tech Online (Virtual)

Instructions: Residential/On Campus 

Online Courses for VIrtual Option

Expand your understanding of STEM education, as you research curricular connections and integrative strategies for teaching and learning STEM concepts


Semester Hours

Many STEM Elective Options


Faculty Commitment

Intensive Research Opportunities

Our Integrative STEM Education program

A program primarily for K-12 STEM educators and related fields that develops 21st century STEM educators, leaders and scholars by facilitating broader understanding of the intersections among the STEM/ STEM education disciplines and new integrative approaches for the teaching/learning STEM content.This non-thesis Master’s degree is designed for students who already hold a Bachelor's Degree. The M.A.Ed. program will help you build on your existing knowledge and experience as you expand your understanding of STEM education through explorations of integrative strategies for teaching STEM concepts, often through design-based and transdisciplinary challenges. 

Why Study Integrative STEM Education Here?

What makes Virginia Tech's Integrative STEM Education program different from other S.T.E.M. programs is our emphasis on the integrative approach and the connections among the subjects. We have found that framing problems in terms of a design-based challenge provides an excellent springboard for such investigations. For example, challenging students to design a prototype power source for an off-grid hospital location would lead to (student-directed!) investigations of weather, climate, and electricity; solar- and wind-based technologies; material properties and specifications; and calculations of area and speed. Placing these concepts in a relevant context helps students see the immediate value of what they are learning, while they are constantly practicing their 21st-century skills of teamwork, communication, and problem solving. 

What You’ll Study

The coursework for this degree is available on campus and through synchronous web-based delivery.

Integrative STEM Education Core Courses (15+ semester hours):

  • EDCI 5804: STEM Education Foundations (3 SH)
  • EDCI 5814 STEM Education Pedagogy (3 SH)
  • EDCI 5824: STEM Education Trends and Issues (3 SH)
  • EDCI 5834: STEM Education Research (3 SH)
  • EDCI 5844: STEM Education Seminar (3 SH)
  • EDCI 5854: Biotechnology Literacy by Design (3 SH)
  • EDCI 5774: Readings in STEM Education (3 SH)
  • EDCI 5964: Field Studies in Education (3 SH)


Options include:

  • Educational Foundations;
  • Educational Research;
  • Science Education;
  • Technology Education;
  • Mathematics Education;
  • Engineering Education; etc

Career and Professional Development

Graduates of the Virginia Tech Integrative STEM Education program are among the most sought after professionals in higher education.

The School of Education provides students with a plethora of research opportunities, including experimental and observational research, field research, and secondary data analysis. Graduate students are also encouraged to lead research projects and publish in scholarly journals. The school provides support for professional development to participate in conferences through travel grants. Additional professional development and research support resources are provided by the Graduate School at Virginia Tech.

Blacksburg Campus

This degree program is offered at the Blacksburg campus. The Blacksburg campus offers students the full services of the university, including an extensive library, technology support, and the Graduate Life Center. 

Our Faculty 

Research Interests

  • The cognitive demands addressed through technological and engineering design-based teaching and learning
  • Instructional strategies for design-based biotechnology literacy
  • Integrative pedagogical practices among STEM education areas
  • Instructional Design and Technology

John Wells, Associate Professor

John Wells, Associate Professor

Research Interests

  • K-12 teacher professional development in engineering education
  • Design and implementation of project-based classroom activities

Bradley Bowen

Bradley Bowen, Assistant Professor

Integrative STEM Education Research Highlights

Ernst, J. V., Glennie, E. & Li, S.  (2017). Performance-based task assessment of higher-order proficiencies in redesigned STEM high schools. Contemporary Issues in Education Research.10(1), 13-32.

Love, T. & Wells, J. (2017). Examining correlations between preparation experiences of U.S. technology and engineering educators and their teaching of science content and practices. International Journal of Technology and Design Education Online First. doi: 10.1007/s10798-017-9395-2.

Wells, J. (2017). Design to Understand: Promoting higher order thinking through T/E design based learning. Proceedings of the Technology Education New Zealand and International Conference on Technology Education-Asia Pacific, pp.325-339. TEMS Education Research Center, University of Waikato, New Zealand.

Ernst, J. V., Clark, A. C., & Bowers, S. W.  (2016). Flexible and job-embedded professional development for in-service technology, engineering, and design educators. Journal of Technology Studies. 42(2), 65-74.

Wells, John G., (2016). Efficacy of the technological/engineering design approach: Imposed cognitive demands within design based biotechnology instruction. Journal of Technology Education, 27(2), 4-20.

Wells, John G., (2016). PIRPOSAL Model of Integrative STEM Education: Conceptual and Pedagogical Framework for Classroom Implementation. Technology and Engineering Teacher, 75(6), 12-19.

Li, S., Ernst, J. V. & Williams, T.O.  (2015).  Supporting students with disabilities and Limited English Proficiency: STEM educator professional development participation and satisfaction.  International Journal of STEM Education, 2(20), 1-10.

Ernst, J.V. & Williams, T.O.  (2014).  Technology and engineering education accommodation service profile.  Journal of Technology Education, 26(1), 64-74.


  • At-Risk Post-secondary Student Learning Strategies
  • At-Risk Secondary Learner Preference in Engineering/Technical Graphics
  • At-Risk Social Competence for Technology Education
  • At-Risk STEM Learner Note Taking Quality
  • Augmented Reality as a Visual and Spatial Learning Tool
  • Authentic Assessment for New Schools Project STEM Teachers
  • Computational Modeling for Secondary Virtual Public Schools
  • Developing 3D Modeling Courses for Online Teaching
  • Engineering By Design [EbD]
  • Estuarine Ecosystems: Informal Integrated STEM Education
  • Experiential Learning in Technology Teacher Preparation
  • Integrative STEM Education: U.S & Zimbabwe Collaboratory
    [Virginia Tech/Hampton University (U.S.) & NUST/Hillside (Zimbabwe)]
  • K-12 STEM Education Colloquium: Exploring Models of STEM Integration
  • Re-Designed High Schools for Transformed STEM Learning (TSL)
  • Research In Engineering Education [RiEE]
  • Transforming Teaching through Implementing Inquiry (T2I2)
  • Virginia Initiative for Science Teaching and Achievement (VISTA)

Students interested in applying to the Integrative STEM Education (M.A.Ed.) degree should contact the program director, Dr. Jeremy Ernst, by email at or by phone at 540-231-9193.

Visit our office 317 War Memorial Hall , 370 Drillfield Drive, Blacksburg, VA 24061
Domestic Application
Spring: January 1
Summer: May 1
*Fall:  August 1
International Application
Spring: September 1
Summer: January 1
*Fall: April 1
*Deadline for early decision admission with full funding consideration for Fall: March 1.


John Wells
Program Leader
317 War Memorial Hall

School of Education (SOE) Programs

School of Education
226 War Memorial Hall (0313)
370 Drillfield Drive
Blacksburg, VA 24061